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Abstract

An integral formula is derived, relating the six irreducible components of the intrinsic torsion of ,&BpSp
structure on a compacu4dimensional manifold with the Riemann curvature tensor. Some consequences of the
formula are studied.
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Introduction

In a previous articlg2] we presented a method for obtaining, on a compact manifold with an
orthogonal G-structure, an integral formula relating the intrinsic torsion of the structure with the
curvature of the underlying Riemannian structure. There, the cases=df),, SU,, G, and Spin were
studied. In this follow-up we study the case@i= Sp,Sp,, referred to sometimes in the literature as an
“almost-quaternionic-Hermitian structure”.

Briefly, the idea of our previous artic[] is the following. LetM be a compact Riemannian manifold
with an orthogonalG-structure, i.e., the structure group of is reduced to a subgrou@ of the
orthogonal group, wheré& is assumed to be the stabilizer (in the orthogonal group) bffam &.
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In the present case @f = Sp,Sp, we havek = 4 and® is commonly called “the fundamental 4-form”.
The covariant derivative/ @ (with respect to the Levi-Civita connection of the underlying Riemannian
metric) can then be naturally identified with timrinsic torsiont of the G-structure, so thav® =0 if
and only ift =0, in which case the local holonomy of the Levi-Civita connection is contain€#} see
for example the book of S. Salam#j for more details.

From the Bochner-Weitzenbock formula for the Laplaciankeéforms one obtains, after integration
by parts, a formula of the form

/||dq>||2+ |d* @] — ||V¢||2=/<E¢,¢>,
M

M

whereR is a certain operator of-forms induced by the Riemann curvature tengor

Next, using some elementary representation theory, we decompose all tensors in the above formula int
their G-irreducible components and obtain, under certain representation-theoretic conditions (satisfied
for G = Sp,Sp,; seeSection 2.}, a formula relating the.,-norms of the irreducible componentsof
the intrinsic torsion with the integral of a certain curvatareénvariant,

Yo [t = [ur.gb 1)
M M

for some real constants depending only orG (and neither oM nor on the particulaG-structure);

R is the so-called curvature operator of the Riemannian structure (i.e., a section(ef’EfitiV)); see
Section 2.1Jbelow for details). In this way, one obtains a curvature obstruction to the existence of certain
G-structures characterized by their torsion properties.

This article is devoted to the derivation of the formula in the cas& ef Sp,Sp, and the study of
some of its consequences.

In Section Ifollowing this introduction we collect some standard information about the gropBBp
and its representations and establish the notation and terminology used in the rest of the article.

Section 2contains the bulk of the article, consisting of the computation of the constgntsus
establishing the precise form of formylh) (seeTheorem ). This computation recovers the well known
fact[8] that, forn > 2, an SpSp;-structure with closed fundamental 4-form is torsionless.

Section 3discusses various consequences of the formula. For example, we derive the following appar-
ently new resultCorollary 2: A compact quaternionic-Hermitian manifold with non-positive complex
sectional curvature is necessarily quaternionic-KaheeeDefinitions 2and3 in Section 3below for
the definitions of complex sectional curvature and quaternionic-Hermitian manifold (respectively).

1. Sp,Sp;-structures

In this section we collect some basic terminology and properties of the groppSpnd its
representations. We do not claim any originality for this material and suggest the book of S. SEhmon
and the article of A. Swa[8] as references.
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1.1. Definition of the grou®p,Sp,

Denote byH the space of quaternions = xg + ixy + jx2 + kx3, x, € R, p =0,...,3, with
i?=j?=k?>=—1,ij = —ji =k, etc. Denote conjugation dd by x — ¥ = xg — ix1 — jxo — kxa,
so that|x|? = xX = ¥x = Zizo(xu)2 is the usual Euclidean norm. Denote Wy.:= H" the space of
columns ofn-tuples of quaternions = (vy, ..., v,)", v, € H,« =1, ..., n. Introduce a Euclidean norm
onV by [[v]|2:=>"_, |v,|?. ThenV is areal 4-dimensional Euclidean vector space. Denote its (proper)
orthogonal group by S§).

MakeV a quaternionic vector space (Birmodule) by lettingH act onV by scalar multiplication on
theright. The group oft-linear automorphisms &f is denoted by GJ.(H), given by left multiplication
by n x n invertible quaternionic matrices.

Right multiplications byi, j, k define onV three orthogonal almost complex structues/, K;
denote the corresponding three Kahler formsdbyw;, wg (respectively).

Let Sp, ¢ SOy, denote the subgroup preserving the triple of 2-formsw,, wgx. An orthogonal
transformation preserves an almost complex structure if and only if it preserves the corresponding Kéahler
form, hence Sp= SOy, N GL, (H). In particular, Spis just unit quaternions.

Let Sp,Sp, € SO4, denote the image of Spx Sp, in SOy, under the combined action ov,

(A, x):v — Avx~L. The kernel of this action is easily seen to h&(1, 1)} c Sp, x Sp,, hence
Sp,Sp, = Sp, x Sp /{1, D}.
Note that SpSp, = SOy, so we will only consider here $8p, for n > 2.

1.2. The fundamental 4-form and the intrinsic torsion

It is easy to see that the 4-forth := w; A w; + w; A w; + wg A wg € AYV*) is Sp,Sp-invariant,
hence it defines on azdmanifold with an SpSp, -structure a 4-form, callethe fundamentad-form, and
denoted here for simplicity also .

Moreover, the group Si®p, is actually the stabilizer ob in SOy, (in fact, even in Gl,,(R), forn > 2,
although we do not use this fact here), hence a reduction BB pn a Riemannian#manifold is given
by its fundamental 4-form. The covariant derivatve can be identified with the intrinsic torsion of the
Sp,Sp;-structure, as we now explain.

For a subgrouf ¢ SOy, with a Lie algebrag C soa, = A%(V*), the intrinsic torsion of & -structure
is a sectionr of the bundle associated wilhi :=V* ® g+, whereg' is the orthogonal complement gf
in A2(V*).

There is a bilinear map: A%2(V*) x A*(V*) — A¥(V*), essentially the derivative of the pull-back
action of SQ, on k-forms, defined by the formula

(OLA6) - =02 A[INt(OL @ ¥) ] — 01 A [iNt(B2 @ ¥)].

where int V* @ A¥(V*) — A¥1(V*) is “interior product” (contraction), given fot = 1 by the inner
product, and extended far> 1 as an anti-derivation (with respect to thé(V*) factor).

Since G = Sp,Sp, is the stabilizer of® € A*(V*), its Lie algebrag = sp, @ sp, is the kernel
of the map-®: A2(V*) — A*(V¥), thus inducing aG-equivariant identification of the torsion space
W :=V* ® g with a certain subspac® c V* ® A*(V*), mappingt > V®. And so in order to
decomposev @ into its G-irreducible components it suffices to decompdse® g+ and apply-@ to
the second factor. This we do in the next subsection.
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1.3. Representation theory

In general, the complex irreducible representations of a product of compact gfupsG, are
given by tensor productd; ® A,, where A; and A, are complex irreducible representations @f
and G, (respectively). When decomposing an,Sp;-representation into irreducibles, we therefore first
complexify (in case we start with a real representation sudh)athen decompose into a sum of tensor
productsA; ® A, with A; and A, complex irreducible representations of, Sd Sp (respectively).
Clearly, as ourG = Sp, x Sp,/{£(1, 1)}, we will only encounterA; ® A, for which (-1, —1) acts
trivially.

Let E denote the complex vector space obtained fkom H" by fixing the almost-complex structure
I (i.e., restrict the rightl-action toC c H). Then left multiplication by quaternionic matrices tufas
into a complex 2-dimensional irreducible unitary representation space for Sp

Let e1,...,e, be a quaternionic unitary basis f&f (i.e., they are mutually orthogonal unitary
vectors whichH-spanV) and lete* = e, j, « =1,...,n. Then{e,, e*}’_, is a (complex) unitary basis
for E. Denote by{z,, z*},_, the corresponding (complex) dual basisEf. Define 2 = w; — iwk.

A computation shows tha® = Y z, A z%. Hence2 € A%(E*) and is Sp-invariant.

Denote the orthogonal complement®fin A2(E*) by AZ(E*). More generally, denote the orthogonal
complement of2 A A*~2(E*) in AF(E*) by A{(E¥). ThenE*, A3(E*), AS(E*), ..., AR(E*) are complex
irreducible, mutually distinct, Sprepresentations.

Passing to Sp we denote by¥ the dual of the complex 2-dimensional ;Sepresentation obtained
from H by restricting to right-scalar multiplication iy C H. Let {p, g} C ¥ be the basis dual tfl, j}.
Thenw := p A q € A?(X) is Sp-invariant. A complete list of the complex irreducible representations of
Sp, is given by the symmetric powelx" =855X),k=0,1,2,....

Next, we have an isomorphism of complex,Sp, representationss @¢ X* =V ®g C, given on
basis elements by

ey @ L> ey —/—1(eyi), e @ j> ey j — v —1egk),
e R 1> ey j 4+ /—1(eyk), e ® jr> —ey — /—1(e4i),

followed by multiplication by %+/2 (so as to be an isometry).
Using this isomorphism, we have

A2V @C=AXE'® X) = [SY(EY) @ AX(D)]| @ [4%(E") ® 2]
=[S2EH ®w] @2 ® X o [43(E) ® £2].
The first two summands in the last formula correspond to the Lie algektap, @ sp; C s04, = A2(V*)

so the last summand is- ® C and is irreducible.
We thus get for the §f$p, intrinsic torsion space

WeC:=(V'®g)RCZ[E'®X|®[A5E") & X7
= [E*® AFEMH]®[Z ® 27]. )
Now we need the following decompositions:

e The Sp-decomposition:
E* ® AG(E") = A5(E") @ E* @K,
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where

— A3(E*) — E* ® A3(E*) is given by inclusion; fon = 2, A3(E*) = 0.

- E* — E*® A3(E*) is given by wedging with2 followed by orthogonal projectioB* ® A?(E*) —
E* ® AZ(E);

- KCE*® Ag(E*) is the kernel of the “Bianchi” symmetrizer (123 + (132), i.e., the space of
all tensorsT € E* ® Ag(E*) satisfying the identityl' (e, ez, e3) + T (e2, €3, 1) + T (e3, e1, €2) =0,
for all ey, e2, e3 € E. Another description oK, in terms of Young symmetrizers, is as the image of
E*®E*®E* under(1—(23))(1+ (12)), followed by the projectiolE* ® A%(E*) - E*® A%(E*).

e The Sp-decomposition:

ryeXIlz=yoxs

where

- ¥ - ¥ ® ¥?is given by tensoring withw, 6 — » ® 6, followed by orthogonal projection on
¥ ® X¥? (symmetrization in the second and third entries).

- ¥% > ¥ ® X¥?is given by inclusion.

The above information, once inserted into form(23 yields

Proposition 1. TheSp,Sp, torsion space¥ :=V* ® g* decomposes into the direct sum@ifreducible
non-isomorphic subspaces, corresponding toGlmimmands one gets after expanding the right-hand
side of

V'®g' 1@ C=[E* R AFE)|R[ZRZIZ[AFE)GE 0K|R[Z & X7

Let us denote these 6 irreducible summands of the torsion spaég,by. , W,
WQC=ZAIEN®XE? W, CZE'®X% W:C=KeX®
W4®C’£A8(E*)®E, WsQC=E"® X, WeR@C=EK®X.

Note that since the 6 summands are non-isomorphic, they must be mutually orthogonal.
Finally, note that fom = 2, since A3(E*) = 0, there are only 4 irreducible summands (omittiig
andW,).

2. The Sp,Sp, Bochner formula
2.1. The Bochner formula for orthogon@l-structures

Let us recall from our previous articl] the general Bochner type formula for an orthogonal
G-structure on a compact manifold, wheteis the stabilizer of &-form @:

/||d<1>||2+ 6% — ||V<1>||2=/<’1€<1>,q>>, ®3)
M M

whereR is the operator ow-forms obtained from the Riemann curvature tengas follows: consider
R as a section ofi?(M) ® A2(M), R=>_a ® B,thenR® =Y «a - (B - P).
Next, we make the following assumptions 6n
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(i) gt isirreducible.
(i) W=V*® g* is multiplicity free.

Note: both assumption are satisfied for our gréig- Sp,Sp, (seeSection 1.3.

With these assumptions, one decompdées: @;_, W;, where theW; areG-irreducible and pairwise
non-isomorphic (by assumption (ii)) and accordm@l;b Y (V@) with (V®), € W;, whereW,; is
the image ofW; under the embeddiny/ =V* ® gt =V AKV"), 0 B0 ® (B - ®). Since the
W; are irreducible and non- isomorphic they are mutually orthogonal, hgvideg|? = >"7_ [|(V®); ||

FromV® one obtaing/® = alt(V®) ands® = —int(V®) by the linear maps al* @ AK(V*) —
AFL(V*) (exterior product, oalternatior) and int:V* ® A*(V*) — A*~1(V*) as inSection 1.2

When restricting thes-equivariant maps alt and int to the irreducible summaWigighey must be
a homothety onto their image (by Schur's lemma), hence there exist non-negative constants
such that| alt(w;)[|? = a;||w; ||, || int(w;)||> = b; ||w;]?, for all w; € W;, i =1,...,r. It follows that
ld@ 7 = Y"1y a; (V@) |1? and||d* @[> = > _; bi [ (VP); ||

Let 7 = ) 1; be the decomposmon of the intrinsic torsion into irreduciblese W;. Then, by
assumption (i), the map* ® g+ — W, 1+ Vo, is a homothety, hence there is a constant 0
such that|(V®); |2 = C||7 2.

Regarding the curvature term on the right hand side of forr{@)lawve recall from[2] the following
calculation:

(RO, @)= (o (8- D). @)=—) (B-®.a - &)=CU(R.g").

where t(R, g*) denotes “the trace of thgy*, g*) block” of the curvature operator (the latter &5
interpreted as an endomorphism 4f(V*); note also an annoying switching of signs betweeand
‘R which we are unable to avoid).

In this way, after we determine the homothety factarsh; (in the next subsection), formulg)
becomes

>o [ Iml?= [u®. . (4)
=1y M

with ci=a; +b, — 1.
2.2. The homothety factots, b; for G = Sp,Sp,

For eachi =1, ..., 6 we pick a non-zero element; € W; ® C, determine its image; Wl» ® C,
apply alt and int, and calculate norms. The outcome of this calculation is given in the following tables. In
the next subsection we give some information on the calculations involved in obtdmirhgs 1 and 2

Remarks.

1. Forn > 3, it follows immediately from the fact that all the # O that the fundamental 4-for@ is
parallel if it is closed. This has already been noticed before by $8jan

2. The caser = 2 is different fromn > 3 in two respects: first, the componerii€®); and (Vd),
are absent; and second, of the 4 remaining terms, the componéM @Jg) vanishes identically.
Consequently, the vanishing @ is not sufficient in general to guarantee the vanishing &f. In fact,
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Table 1
Summary of calculations for > 3
w lli; 112 Il alt(i;) 12 Il int(w;)]|2 aj b
W1 a®s 12 15(2n — 1) 9 52n-1) 2
W, b®s 4n —D(2n+1) 501 — (21 +1) (n—1D2n+1)72 2 20l
W3 c®s 4n n—2 0 n-2 0
A a®t 18 18(n + 1) 0 ntl 0
Ws b®t 6(n — 1)(2n + 1) 12(n — 1)(2n + 1) 12(n — 1)2(2n + 1) 2 2(n — 1)
We c®1 6n 6n—3 9 21 -

Table 2
Summary of calculations for = 2
wj iy 112 || alt(w;) |12 = || int(;) |2 a; = b;
Wo b®s 20 25 54
W3 c®s 8 0 0
Wg bt 30 60 2
Weg cRt 12 9 34

Salamor{6] has recently constructed a compact 8-manifold carrying a non-parajl8psSstructure with
closed®.

As a consequence of the calculation we get the following:

Theorem 1. Let M be a compac#n-dimensional manifoldp > 2, with an Sp,Sp;-structure with
an intrinsic torsiont. Let t = Z?:Ni be the decomposition af into irreducible componentgsee
Proposition1; note that forn = 2, 11 = 14 = 0). SetE; = [M It i =1,...,6. Lettr(R, g*) be the
trace of the Riemann curvature operator Mf restricted to the orthogonal complement of the Lie
algebra ofSp,Sp, in A2(V*), followed by orthogonal projection ongp-. Then for alln > 3

3n—-1 n—l—lE 3n+2

E —
o At R

1 1
E3 + ;E4 +(2n—DEs+ ;Ees = /tr(R, ah).
M

For n = 2 the formula is

3 1
EE2 — E3+3Es5+ EE6 = /tr(R, gb).
M

2.3. Comments regarding the calculationaf b;

1. Denote the basis elements® p,z* @ p, 2, ® ¢,2* ®q Of E* @ X =V* ® C by pa, p*, qu. q*
(respectively). In terms of this basis, thé-bilinear) inner-product is given byp,, ¢%) =1, (p*, q.) =
—1, and the remaining pairs of elements of the basis are orthogonal.
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2. Denote basis elements af (E*) by zop 1= 24 A2, 28 := 2o A 2P, zZﬂ =24 Azg A Z7 (Inthis order),
... etc. Similarly, denote basis elements/0f(E* ® X) = A*(V*) @ C by pus = pu A pg, P2 = pu A PP,
p;’ﬁ ‘=py ApgApY,...etc.

3. Omit the® symbol; e.9.p2=p® pe X%, 2123 =21 ® (22 A Z°), ... et

4. Define the following elements in the three irreducible summanés ef A%(E*):

e In the A3(E*) summand, for > 3, let

a 1= 271223+ 22231 + 23212}

i.e.,a = z123 Up to a constant.
e In the E* summand, let

b:=z2:2/n+ Zz“zla — ZaZ7-
o

This we get by starting withty A 2 = const(z182 + ), [2%214 — z02]]) € E* ® A%(E*), then
apply, in theA?(E*) factor, orthogonal projection onta3(E*). Using the Hermitian inner product
h(-,), this projection is8 > B — 522 . Nowh(2, 2) =Y, , h(z% 2) =n, and sx182 - O,
D a2 Y %z and =) zezl > Y 2ah(2. 2)2/n — 242§ = 2182/n — ), 2425, from
which the value ob follows.

e IntheK summand, let

C = Z21212-

This is obtained by applying the Young symmetrizér— (23))(1 + (12)) to z1z1z», followed by
orthogonal projection ont&* ® AS(E*), as described befoieroposition 1

5. Define the following elements in the irreducible summands of the decompositiBrgok?:

e Inthe X2 summand: let

s=p°.

e Inthe ¥ summand: let

t = p(pq+qp)/2—qp°.
This we get by applying the process described befRvmposition 1o wp = (pg — gp) p.

6. For each of the torsion space elemanis=a s, wo=>bQ®s, ..., as defined above, we need to
find a corresponding elemeit € W; ® C C V* ® (g+ - @) ® C. For this, one needs in principle to write
explicitly @ and apply-@ : g+ — A*(V*) to the second factor iNV* ® g*. However, we found that it
was easier to “guess” the outcome of this map. The point isaimahon-zeroG-equivariant mag* —
A*(V*) will do: one can verify first that the irreducibl&-representatiog’ ® C = A3(E*) ® X2 appears
with multiplicity 1 in A4(V*) ® C = A%(E*® X); hence, by Schur’s lemma, any t@bequivariant maps
gt ® C - A*(V*) ® C coincide, up to a constant. We proceed to give such a map as a composition of
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“obvious” maps as follows:
A2EH @ 3215 AXEY) © 22 22 A2(EY) @ AXEY) © 32
B A2(EY) @ A2EY) @ A4(2?) 25 A2(EY) @ AXEY) @ 32 ® 32
L A2E) @ X2 A2EN) @ 22 L% A2E @ X) @ AXE*® X)
I ANEF R B,
where
f1is given by the inclusiom2(E*) — A%(E*¥) tensored with the identity map aBb?;
f2 is given by inserting the Spinvariant2 = > z¢ in the second factor af(E*) ® A%(E*) ® x2

f3 is given by the identity map om?(E*) ® A%(E*) tensored with an SpisomorphismX? —
A?(X?) (essentially the Hodge isomorphism; note tBtis 3-dimensional):

p* > p*(pq +ap) — (pq +qp) p°.

pa+ap > 2(p*4” — 4°p°),

q° ~ (pq +ap)a® — q*(pq + qp):
fais given by the identity map on?(E*) ® A%(E*) tensored with the inclusion?(X?) — ¥2® X?;
fs is given by interchanging the second and the third factor;
fe is given by the inclusiomM?(E*) @ X2 — A%(E* ® X) = [A%(E*) @ 2] @ [SA(E*) @ A%(X)]
tensored with itself;
e f7is given by antisymmetrization.

Each of these maps is clearly Sp,-equivariant, hence their composition is also, therefore it is a
constant multiple of the (complexification of the) desired mapg* — A*(V*).
Thus, for example, if we start with;, = z1,p? € A3(E*) ® X2 we obtain

2 f20f1 2
212p > 22122517
o

faof. .
Y 2102 [ PP (pg +qp) — (g + ap) p°]

o

f
== Y22 P2 (pa +ap) — (pa +ap)zip’]

o

f a
> Y [P12(pad® + 4ap®) — (Prg2+ 192) P

o

f (04 o o o
5 (1w AG® = Pia A e — Py A G2+ Phy A ).

o

As another example, take A g2 + g1 A p2 = z12(pg + qp), obtaining

faowof.
212(pq +qp) F=" ) 221228 (pPq7 — 4P pH) > 2) (P12 A gl — qua A p).
o o
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7. To calculate the norms of thg it is actually simpler to calculate the norm of the € V* ® g+ and
multiply by the homothety facto€ of our mapg™ — A*. From either of the above examples one can
calculate this factor: takingy»(pg + gp), we have

2
|z12(pg + ap) | = lz12ll*l pg +gpll> =1-2=2,
2
=4(n+n)=28n,

HZZ(pnA 45 — q12A pY)
o

hence we get that the factor@s=8n/2 = 4n.

8. The zeros in the table are explained by showing #7&V*) does not contain irreducible summands
of type W3 or Wy.

9. Now we need to calculate for each of the 6 elements W; ® C, the corresponding element
w; € W; @ C C V*® A*(V*), then the norms of;, alt(w;) and in(w;). This is not a particularly pleasant
task, even after all the above remarks and shortcuts. We shall present the calculation only for the firsi
elementw; = a ® s, after which the reader would rather check the other cases more efficiently by herself
than follow our detailed presentation.

So if we start withw; = a ® s we end up with the following elemerit;:

a®s = (z1223)p° + - --€tc > p1(z23p?) + - --€tc
e Zpl(pzsa/\q“ — P33 Ga — Pay NG3+ D3, A q2) +--- €t

a

= wi,
where “ - - etc” stands for 2 more similar terms obtained by cyclic permutations of 1, 2, 3.
We thus get
alt(iby) = Z(Plza NG = P13 N Ga — Piay N q3+ Pla, N q2) + - €l

= —5p12sA (PP Aqr+---ete)

+) [8p123A (Pu A G — P* A Ga) = 2D% A (Pr2 A g+ -+ €1C)],
a>4

int(w1) = 3p123.
Hence
l1]|? = 4nf|ws||> = 4n - 3=12n,
|alt(iin) | * = 25-3+9- 2(n — 3) + 4(n — 3)3=15(2n — 1),
ity |* =9,

and

1520 —1)  5(2n—1) b — 9 3
T 1 4n YU 1w T

10. Forn = 2, we have the identity alt(w)||* = || int(w)||?, w € W. This follows from the (anti-)self-
duality of the 4-form@: use the identity (6 A ) = int(6 ® =), holding for any 1-formp and p-form

ay
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v appliedton =6 ® (8- @), B € g, getx[alt(w)] =int[d @ x(B- )] =int[d @ (B - *xP)] = +int(w),
hence | alt(w)| = |int(w)|. A quick representation theoretic proof of the (anti-)self-duality dof
without an explicit calculation of, consists of verifying that the trivial subspadg-fixed) of A%(V*)
is 1-dimensional. Since the Hodge star commutes withGikection we have that¢® = c®; butx is an
isometry, hence must be+1.

3. Applications
Definition 1. An Sp,Sp,-structure with vanishing torsion,= 0, is called quaternionic-Kahler.

All the applications we shall present here are based on the following obvious consequence of
Theorem 1

Corollary 1. Let M be a 4n-dimensional compact manifold with aBp,Sp,-structure such that
tr(R,gt) <O0andm=0,0ortr(R,g") >0andr =13 (ile, m=mm=m=15=15=0f0orn >3, or
1, = 15 = 15 = 0 for n = 2). Then the structure is in fact quaternionic-Kahler.

We shall now study the conditions appearing in the above corollary.

Definition 2. A Riemannian manifold(M, (,)) is said to have a non-positive complex sectional
curvature, K¢ < 0, if for every p € M and every pait, w € T;M ® C,

(RzAw), zAw) <0.

For example, a manifold with a negative semi-definite curvature opef@tar,0 (e.g., a hyperbolic
manifold, or more generally a symmetric space of non-compact type), has obviously a non-positive
complex sectional curvature. A weaker sufficient condition kar < 0 is that the (usual) sectional
curvature is negative and “pointwisg¢4kpinched”, i.e.,—«x < K < = for some positive function
on M (see[3]).

Proposition 2. If K¢ < Othen the curvature term in thfep,Sp, Bochner formulgsee Theorert) is < 0.

Proof. First note thap™ ® C = A3(E*) ® X2 contains a non-zero decomposable element, g.g\ p» =
z12p2. Next, define the following linear functional;, on the space of curvature type operators:

1 ——
G) / (R(gp1 A gp2). gp1 A gp2)disc-
G

T(R)=

vol

Clearly, T(R) < 0 if K¢ <0, so it is enough to show thaf(R) is a positive constant multiple
of tr(R,g"). Let 7 :EndA?) — End(g') be given byR — R*, where R+ is the restriction of
R e End(A?) to gt followed by projection ontog (i.e. the “(g*, g*)-block” of R). It is clear,
by their definitions, that botH'(R) and t(R, g*) are G-invariant linear functionals that factor
throughsr. By Schur's lemma, the space 6finvariant linear functionals on Eigt) is 1-dimensional
(since gt is irreducible). ThereforeT(R) must be a multiple of tR,g"). Evaluating atR =
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id,,2 (the curvature operator of a sphere) we get théRtg') = (dimg-)T(R) and the statement
follows. O

It follows from this proof that the proposition holds for any orthogoGasuch thatg™ is irreducible
andg' ® C contains a non-zero decomposable 2-form. For exampl&; ferU,, C SO, n > 2 (see also
[4, Lemma 4.2).

Next, we find a natural condition implying = 0.

Definition 3. An Sp,Sp,-structure on a manifold is said to be quaternionic-Hermitian if the associated
GL,, (H)H*-structure is torsionless.

One can identify the intrinsic torsion space for GH)H* with the subspacgE* ® A%(E*)] R X3=
W1 @ W, @ Ws; thus, an SpSp;-structure is quaternionic-Hermitian if and onlydf =7, =3 =0
(tp=13=0forn =2).

This condition is attractive also because it turns out to be equivalent to the integrability of the canonical
almost complex structure on the twistor space associated with a manifold with, 8p, Sructure (see

(7).

Coroallary 2. A compact quaternionic-Hermitian manifold with non-positive complex sectional curvature
is quaternionic-Kahler.

Proof. This is a consequence Gorollary 1andProposition 2 O

A theorem of S.K. Yeund9] states thata compact quaternionic-Kéhler manifold with negative
pointwise 1/4-pinched sectional curvature is a quotient of the quaternionic-hyperbolic spasiag
Corollary 2 we can strengthen this result by relaxing the assumption of “quaternionic-Kahler” to
“quaternionic-Hermitian”:

Corollary 3. A compact quaternionic-Hermitian manifols with negativel/4-pinched sectional
curvature is a quotient of the quaternionic-hyperbolic space.

Proof. According to [3], negative }l4-pinched sectional curvature implies non-positive complex
sectional curvature. ApplyinGorollary 2we get thatM is quaternionic-Kahler. Now apply the theorem
of Yeung. O

Now we applyCorollary 1to get an analog oforollary 2for the closely related manifolds with an
Sp, structure (referred to sometimes as an “almost-hyper-Hermitian” structure).

Definition 4. An Sp,-structure is said to be hyper-Hermitian if the associated, (Gl-structure is
torsionless (this is equivalent to the integrability of the three associated almost complex structures
1, J, K). A torsionless Spstructure is called hyper-Kahler (this means the 3 complex structures are
parallel with respect to the Levi-Civita connection/ = VJ = VK =0).

Corollary 4. Let M*', n > 2, be a compact manifold with a hyper-Hermitian structurer(R, g*) < 0
then the structure is hyper-Kahler.
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Proof. A hyper-Hermitian Sp-structure induces a quaternionic-Hermitian structure, and thus, by
Corollary 1, M is quaternionic-Kéhler. Now according to Theorem 4.3[1}f, a complex structure
compatible with a quaternionic-Kéhler structure is necessarily parallel. Apply this to the 3 complex
structured, J, K. 0O

Corollary 5. Let M*, n > 2, be a compact manifold with a hyper-Hermitian structureK < 0 then
the structure is flathyper-Kahler withR = 0).

Proof. By Proposition 2tr(R, g*) < 0, hence, by the€orollary 4 the structure is hyper-Kahler. This
implies that the scalar curvature vanisigs Now non-positive complex sectional curvatuié; < 0,
implies that the (usual) sectional curvature is non-positike< 0; but the scalar curvature is an
“averaged” sectional curvature, henke= 0, which impliesR =0. O

Remark. The last two corollaries are clearly false in the non-compact case: take the standard (flat)
hyper-Kéahler structure ifil", restrict to the open unit ball and change the metric to the hyperbolic metric
(K = —1). Since this is a conformal change of metric the structure remains hyper-Hermitian, but it is not
hyper-Kéhler and not flat.

Finally, here is an application with a positive curvature assumption.

Corollary 6. Let M be a compac8-dimensional manifold with aBp,Sp,-structure for whichd® =0
andtr(R, gt) >0 (e.g., if K¢ > 0). ThenM is quaternionic-Kahler.

Proof. The conditiond® = 0 impliest, = 15 = 75 = 0 (SeeTable 2, i.e., t = 13, so that the left-hand
side of the Bochner formula is non-positive. The conditigiRtrg*) > 0 implies that the right-hand side
is non-negative, hence=0. O
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